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1. INTRODUCTION

The scheduling problem (of cargoes, trains, locomotives) is a widespread problem both in the-
ory and in practice. Publications on this topic can be divided into several groups: by the pres-
ence of movement time in the problem, by the fixedness of the movement time between vertices,
by the fixedness of the movement route at optimization, by structure of the transport network
(multi)graph. For example, [1] used only duration of movement time along transport network graph
arcs, the graph of the special structure (one-way railway) is considered in [2, 3]. The scheduling
problem for the railway network of general structure with a fixed set of routes for trains is re-
searched in [4, 5]. The problem to construct train routes and their movement times along the
railway network is solved simultaneously in [6, 7]. Time in [6, 7] is set to be discrete, that may
cause to the huge dimension of the problem. The simultaneous problem of scheduling and routing
for general structure railway networks is researched in [8–11]. Transportations between vertices
in [8–11] are carried out at only predetermined time intervals.

Difference of problem statements with fixed movement time between vertices from problem
statements with arbitrary time is very principal. In the latter there is supposed that some transport
is able for the carriage at any interval of time. But it is not always physically realizable. The
principal difference [11] from other researches is in possibility to not come in the arrival vertex
before the end of time interval for which the timetable is scheduling (hereinafter referred as planning
horizon). Such possibility is relevant when there is a cargo that needs to be departed shortly before
the end of the planning horizon. But such possibility complicates not only the mathematical model
of carriages but also increases the computation time [11]. That’s why it is relevant to construct a
faster algorithm than the algorithm from [11]. Such algorithm is being constructed in the present
paper.

Within the framework of the transportation model under consideration time of readiness for de-
parture, starting and ending times of movement of any vehicle carrying out transportation between
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vertices are fixed. These characteristics are real numbers. Optimization in the future will be carried
out with the goal to find a particular vehicle for a particular cargo. Other optimization variables
will also be considered. For example it will be the parking time of cargo at various vertices, the
expected quantity of time before delivery after the end of the final planning horizon, delivery of
cargo to the destination vertex.

A system from linear equalities and inequalities is formed to construct the algorithm. This
system contains binary and continuous variables and sets a mathematical model for the carriage of
cargoes along a transport network of general structure. The transport network is represented by
an undirected multigraph. The algorithm performs a decomposition of a set of cargoes, as well as
a decomposition of the planning horizon to reduce the computation time. The algorithm contains
one more possibility to accelerate the computation time. This possibility is based on the cut out
of transportations that are unlikely to be used by cargoes due to the beginning time of these
transportations is earlier than expected arrival time in the respective to these transportations
vertices. The developed algorithm is tested on a meaningful example with millions of binary
variables.

2. BASIC DESIGNATIONS AND ASSUMPTIONS

Let us consider a transport network represented by an undirected multigraph G =< V,E >,
where V is a set of vertices (cities, railway stations, plants, airports, seaports) and E is a set of
edges (highways, railway tracks, seaways, airways), connecting these vertices. Let |V | = M � 2. By
renumbering vertices of multigraph G from 1 to M , we compose a set of indices V ′ = {1, 2, . . . ,M}.
Each element of this set uniquely determines the vertex of multigraph G. Note that the need in
multigraphs for modelling transport systems follows from applications. Namely, oncoming traffic
between two railway stations in the same period of time, for safety reasons, should be separated
along different railway tracks. Therefore for modelling of transportations, it is necessary to sepa-
rately consider all railway tracks (edges) from one vertex (station) to another (station).

We will count the time in minutes relative to a certain moment of reference. By the planning
horizon we mean the time interval [0, Tmax), for which the timetable is scheduling. If the timetable
is scheduled on a day (1440 minutes), then Tmax = 1440.

We divide the planning horizon into P non-overlapping intervals (half-open intervals) T1, . . . ,TP ,
i.e., [0, Tmax) =

⋃P
p=1 Tp, where ∀p1, p2 ∈ {1, . . . , P} : p1 �= p2 Tp1

⋂ Tp2 = ∅. These intervals we

will name as partition intervals. Let us introduce auxiliary variables T p
def
= inf Tp, T p

def
= supTp,

p = 1, P . We construct sets T1, . . . ,TP in such manner that

T 1 = 0, T P = Tmax, T p+1 = T p, p = 1, P − 1.

Let us have I cargoes (parcels, containers, trains), for each of that there are given:

• index of departure vertex vdepi ∈ V ′;
• index of arrival (destination) vertex varri ∈ V ′;

• time of readiness for departure tdepi ∈ [0, Tmax);
• maximal amount of time di during which the cargo is allowed to be at the departure vertex

from the moment of readiness;
• cargo travel time Ti, i.e. maximal amount of time during which the cargo is allowed to be on

the transport network (excluding time at the departure vertex) computed in minutes;
• mass of the cargo wi ∈ R+,

i = 1, I . The cargo is assumed to be indivisible in sense that it can not be sent in parts.

Cargoes carriages between vertices can only be carried out at certain intervals. Let K move-
ments/transportations (by aircrafts, sea ships, trains, trucks) between vertices are available. Pa-
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rameters of transportation mathematically can be represented by 7-element row zk
def
= (vbegk , vendk ,

nk, t
beg
k , tendk ,Wk, Ck), where v

beg
k ∈ V ′ is the index of starting vertex of movement, vendk ∈ V ′ is the

index of ending vertex of movement, moreover vbegk and vendk are indices of adjacent vertices in

multigraph G, nk is the number of the track (edge), connecting vertices with indices vbegk and vendk ,

tbegk ∈ [0, Tmax) is starting time of movement, tendk is ending time of movement, Wk is maximum
transportable mass during transportation, Ck is the transportation cost of unit mass, k = 1,K .
Let us designate using Z the set of all vectors zk, k = 1,K . We renumber elements of set Z from 1
to K. Thus number from 1 to K determines the transportation and its transportation uniquely

In the future, as timetable of cargo we will understand the chain of transportation numbers that
are used by it. One can easily determine by transportation numbers the vertices visited by the
cargo, the time of visiting these vertices, edges of the multigraph used for movement, as well as
other characteristics of the movement.

According to introduced partition intervals T1, . . . ,TP we split the set of transportations for

several parts, namely {1, . . . ,K} = K1
⋃K2

⋃
. . .

⋃KP , where Kp
def
= {k ∈ N : k � K, tbegk ∈ Tp},

p = 1, P .

When transportations are carried out, the warehouses in which goods are stored can be filled.
In addition some operations may be performed with cargoes, for example, repacking. Therefore we
introduce minimal and maximal possible duration of stay at the vertex with index vendk after using
of transportation with number k by cargo with number i: tst min

i,k and tst max
i,k , i = 1, I , k = 1,K .

Obviously, ∀i = 1, I , k = 1,K 0 � tst min
i,k � tst max

i,k .

Let τm1,m2 is expected duration (starting from the moment of readiness for departure) of a
cargo carriage from vertex with index m1 to vertex with index m2, m1,m2 = 1,M . Obviously that
τm1,m1 = 0, m1 = 1,M . If historical observations on carriages from vertex with index m1 to vertex
with index m2 are available then as τm1,m2 one can select sample mean by existing observations,
m1,m2 = 1,M . If this data is unavailable then the indicated value can be estimated by an expert.
Also we introduce value ηm1,m2 that designates expected duration from the moment of readiness
for departure to departure from vertex with index m1 to vertex with index m2. This value is set
by analogy with τm1,m2 , m1,m2 = 1,M .

As the route of cargo with number i we will understand the chain from transportations numbers
used in series by this cargo, i = 1, I . As consequence one can determine the chain of vertices
traversed in series by this cargo using the route. We limit the maximal quantity of transportations
in the route during the planning horizon by some predetermined value J . As jth phase of the
route of ith train we will mean movement of this train when there is used jth transportation in
the route, i = 1, I , j = 1, J + 1. Phase J + 1 is technical, movement in that is not provided, it is
needed for accuracy in the mathematical model formulation. We will name the vertex intermediate
for ith cargo if it’s neither the vertex of departure nor the vertex of arrival for that, i = 1, I .

We also introduce value Di, characterizing the denial in carriage to ith cargo: 0, when cargo is
denied to carriage, 1 is otherwise, i = 1, I . The denial in carriage may be caused by there are not
enough transportations to achieve the destination vertex with restrictions on travel time and other
physical limitations. In the ideal case any of values Di is equal to one, i = 1, I , but it is not always
realizable or it was not successful to find schedule that leads to this result,

3. AUXILIARY RESULTS TO CONSTRUCT THE ALGORITHM

3.1. Mathematical Model of Movements Along Transport Network

We divide set of cargoes numbers I into S non-overlapping subsets Is, i.e. I def
= {1, . . . , I} =⋃S

s=1 Is, and besides ∀s1, s2 ∈ {1, . . . , S} : s1 �= s2 Is1
⋂ Is2 = ∅. In [10–12] there was a proposal to

divide set I by principle of having cargo numbers with the same departure and destination vertices
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in subsets. In addition one can only construct as many subsets as quantity of cargoes. In this case,
in the subset with index 1 there will be a cargo number with the earliest/latest time of readiness
for departure, with index 2—the second/penultimate time, etc.

We suppose that for every cargo with number from sets I1, . . . ,Is̃−1 there is the denial in carriage
or a timetable, i.e. the chain from transportations numbers. If there is the denial in carriage for
cargo with number î∈ ⋃s̃−1

s=1 Is then we assign δ̂̂i,j,k = 0, j = 1, J + 1, k = 1,K, and Dî = 0. If cargo

with number î∈ ⋃s̃−1
s=1 Is is permitted to carriage, then value δ̂̂i,j,k is equal to one, if this cargo uses

transportation with number k at the jth phase, and to zero, otherwise, j = 1, J + 1, k = 1,K. At
the same time we assign Dî = 1.

Initially we will construct the timetable for time interval [0,T 1) to reduce the dimension of
optimization problems to be solved in the future. To construct the timetable for time interval
[0,T 2) = [0,T 1)

⋃ T2 we will take into account (freeze) the timetable for time interval [0,T 1), To
construct the timetable for time interval [0,T 3) = [0,T 2)

⋃ T3 we will take into account (freeze)
the timetable for time interval [0,T 2) and so on.

For this reason we consider only transportations from the beginning of the planning horizon
until end of the interval Tp̃, where p̃ is an arbitrary number from set {1, . . . , P}. Let us formulate
a set of constraints stating movements along the multigraph for cargoes with numbers from set Is̃
in this time, i.e. in the planning subhorizon [0,T p̃). Let us suppose initially, that a timetable for
cargoes with numbers from set Is̃ for subhorizon [0,T p̃−1) (p̃ > 1) is not available.

By Ks̃,p̃ we will mean some non-empty set of transportations set
⋃p̃

p=1Kp, selected for cargoes
with numbers from set Is̃.

For this purpose we introduce auxiliary δp̃i,j,k, characterizing the usage of kth transportation by

cargo with number i at jth phase when timetable is formed for the planning subhorizon [0,T p̃),

i ∈ Is̃, j = 1, J + 1, k ∈ Ks̃,p̃. Variable δp̃i,j,k is equal to one, if transportation with number k is used
by ith cargo at jth phase, and to zero, otherwise.

We have by defnition of variables δp̃i,j,k

δp̃i,j,k ∈ {0, 1}, i ∈ Is̃, j = 1, J + 1, k ∈ Ks̃,p̃. (1)

Movements of cargoes along multigraph G can be performed only along adjacent vertices

∑
k∈Ks̃,p̃

δp̃i,j,kv
end
k �

∑
k∈Ks̃,p̃

δp̃i,j+1,kv
beg
k +

⎛
⎝1−

∑
k∈Ks̃,p̃

δp̃i,j+1,k

⎞
⎠M3, i ∈ Is̃, j = 1, J − 1, (2)

∑
k∈Ks̃,p̃

δp̃i,j,kv
end
k �

∑
k∈Ks̃,p̃

δp̃i,j+1,kv
beg
k −

⎛
⎝1−

∑
k∈Ks̃,p̃

δp̃i,j+1,k

⎞
⎠M, i ∈ Is̃, j = 1, J − 1. (3)

Let us remind that M is quantity of vertices in multigraph G. Constraints (2), (3) cause [10]
to the fact that if for some ĩ ∈ Is̃ and some j̃ ∈ {1, . . . , J} it is true

∑
k∈Ks̃,p̃ δ

p̃

ĩ,j̃,k
= 0, then∑

k∈Ks̃,p̃ δ
p̃

ĩ,j+1,k
= 0, j = j̃, J . If

∑
k∈Ks̃,p̃ δ

p̃

ĩ,j̃,k
= 1, then

∑
k∈Ks̃,p̃ δ

p̃

ĩ,j̃+1,k
= 0 or

∑
k∈Ks̃,p̃ δ

p̃

ĩ,j̃+1,k
= 1.

Constraints (2), (3) are identical to [10, 11] taking into account that the mathematical model is
constructed for the planning subhorizon. Let us note that the third power of M in (2) ensures
correctness of the mathematical model of movements along the multigraph [10].

Arrival at the destination vertex is possible in no more than J phases. Therefore we introduce
constraints ∑

i∈Is̃

∑
k∈Ks̃,p̃

δp̃i,J+1,k = 0. (4)
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Due to indivisibility of cargoes one can use no more than one transportation at any phase
(including the first one) ∑

k∈Ks̃,p̃

δp̃i,1,k � 1, i ∈ Is̃. (5)

If carriage is begun then it must be performed from the respective departure vertex∑
k∈Ks̃,p̃

δp̃i,1,kv
beg
k = vdepi

∑
k∈Ks̃,p̃

δp̃i,1,k, i ∈ Is̃. (6)

If cargo readiness to depart happens after the upper bound of interval Tp̃, then for this cargo
usage of transportations are prohibited until the end of Tp̃, i.e.

J∑
j=1

∑
k∈Ks̃,p̃

δp̃i,j,k = 0, ∀i ∈ Is̃ : tdepi � T p̃. (7)

Cargoes must be departed not earlier than the respective moments of readiness taking into
account maximal duration of stay in departure vertices. At the same time it is possible to not
depart cargo in interval [0,T p̃), if it is admissible, taking into account maximal duration of stay in
departure vertex. That’s why we have constraints

tdepi �
∑

k∈Ks̃,p̃

δp̃i,1,kt
beg
k +

⎛
⎝1−

∑
k∈Ks̃,p̃

δp̃i,1,k

⎞
⎠ T p̃ � tdepi + di, ∀i ∈ Is̃ : tdepi < T p̃. (8)

Let us comment constraints (8). For this reason we consider cargo with number ĩ ∈ Is̃ : tdepĩ
< T p̃.

Due to constraints (1) and (5) there are only two possible variants:
∑

k∈Ks̃,p̃ δ
p̃

ĩ,1,k
is equal to zero

or one. At the same time equality of this sum to zero (i.e. cargo with number ĩ is not departed)

causes to the fact that the following must be true: T p̃ � tdep
ĩ

+ dĩ. If this sum is equal to one, then
according to (5) only one transportation can be used and its beginning time will be in the interval

[tdep
ĩ

, tdep
ĩ

+ dĩ]. It corresponds to the sense of constraints (8) introduced above.

From the same vertex cargo can only be departed once 1

J+1∑
j=1

∑
k∈Ks̃,p̃:vbeg

k
=m

δp̃i,j,k � 1, i ∈ Is̃, m = 1,M. (9)

Arriving in the same vertex for cargo more than once is prohibited

J+1∑
j=1

∑
k∈Ks̃,p̃:vend

k
=m

δp̃i,j,k � 1, i ∈ Is̃, m = 1,M. (10)

Departure from intermediate vertices of the route must not be earlier than arrival in these ver-
tices. Therefore we have, taking into account minimal and maximal duration of stay, the following∑

k∈Ks̃,p̃

δp̃i,j,k(t
end
k + tst min

i,k ) �
∑

k∈Ks̃,p̃

δp̃i,j+1,kt
end
k

+

⎛
⎝1−

∑
k∈Ks̃,p̃

δp̃i,j+1,k

⎞
⎠T , i ∈ Is̃, j = 1, J − 1,

(11)

1 Here and below it is assumed that the sum of any variables over an empty set is equal to zero.
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where

T = max
i∈{1,...,I},k∈{1,...,K}

tendk + tst min
i,k ,

∑
k∈Ks̃,p̃

δp̃i,j,k(t
end
k + tst max

i,k ) �
∑

k∈Ks̃,p̃

δp̃i,j+1,kt
end
k , i ∈ Is̃, j = 1, J − 1. (12)

Constraints (11) and (12) are identical to the respective ones from [11].

To ensure allowability of parking (if it takes place) after the end of subhorizon [0,T p̃) we impose
constraints∑

k∈Ks̃,p̃:vend
k

�=varri

δp̃i,j,k

(
tendk + tst max

i,k − T p̃

)
+ T p̃

∑
k∈Ks̃,p̃

δp̃i,j+1,k � 0, i ∈ Is̃, j = 1, J . (13)

To prohibit carriages after arrival in the destination vertex we use constraints

∑
k∈Ks̃,p̃:vend

k
=varri

δp̃i,j,k � 2

⎛
⎝1−

∑
k∈Ks̃,p̃

δp̃i,j+1,k

⎞
⎠ , i ∈ Is̃, j = 1, J . (14)

Let us comment constraints (14). For this reason we consider cargo with number ĩ ∈ Is̃. If this
cargo arrived in the destination vertex after some phase then left part of (14) is equal to one.
Therefore for compatibility of (14) it is needed that right side would be equal to zero. It means
due to constraints (1) and (5) that the next after arrival phase will not be used as other phases. If
cargo did not arrive in the destination vertex then left side of (14) is equal to zero. In this case the
constraint is satisfied, because at any phase it is possible to use not more than one transportation.
It means that right side will be equal to zero or one.

Let us introduce variable T̂ p̃
i,j that means duration spent by cargo with number i at jth (by order

of traversing) intermediate vertex of its route during the planning subhorizon

T̂ p̃
i,j =

∑
k∈Ks̃,p̃

δp̃i,j+1,k(t
beg
k − T p̃) +

∑
k∈Ks̃,p̃:vend

k
�=varri ,tend

k
<T p̃

δp̃i,j,k(T p̃ − tendk ), i ∈ Is̃, j = 1, J . (15)

We also assign T̂ p̃
i,J+1 = 0 for convenience of modelling.

Further we introduce new variables F p̃
i , characterizing the expected duration of time needed

until arrival in the destination vertex for cargo with number i after the end of the planning sub-
horizon [0,T p̃):

F p̃
i = τ

vdepi ,varri
+

J∑
j=1

∑
k∈Ks̃,p̃

δi,j,k

(
τvend

k
,varri

− τ
vbeg
k

,varri

)

+
J∑

j=1

∑
k∈Ks̃,p̃:tend

k
�T p̃

δi,j,k(t
end
k − T p), i ∈ Is̃.

(16)

Next constraints are needed to not exceed cargo travel time

F p̃
i +

J∑
j=1

∑
k∈Ks̃,p̃:tend

k
<T p,vendk

=varri

δp̃i,j,k

(
tendk − T p

)
+

∑
k∈Ks̃,p̃

δp̃i,1,k(T p − tbegk )

(17)

� Ti +

⎛
⎝1−

∑
k∈Ks̃,p̃

δp̃i,1,k

⎞
⎠ η

vdepi ,varri
, ∀i ∈ Is̃ : tdepi < T p.

Constraints (17) are identical to the respective ones from [11].

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 9 2023



ON THE ALGORITHM OF CARGOES TRANSPORTATION SCHEDULING 1121

We introduce variables ωp̃
i , characterizing arrival of cargo with number i in the respective

destination vertex on the base of used transportations during the planning subhorizon [0,T p̃):
0—arrived, 1—did not arrive:

ωp̃
i = 1−

J∑
j=1

∑
k∈Ks̃,p̃:tend

k
<T p,vendk

=varri

δp̃i,j,k, i ∈ Is̃. (18)

Next constraints are caused by the need in not exceeding maximal allowable mass at transporta-
tion with number k

∑
i∈Is̃

J+1∑
j=1

δp̃i,j,kwi � Wk −
∑

i∈
s̃−1⋃
s=1

Is

J+1∑
j=1

δ̂i,j,kwi, k ∈ Ks̃,p̃. (19)

3.2. Optimality Criterion

Potentially system of equalities and inequalities (1)–(19) may not have a unique solution. There-
fore a criterion is required to select among solutions. Let us compose from all δp̃i,j,k vector δs̃,p̃,

i ∈ Is̃, j = 1, J + 1, k ∈ Ks̃,p̃. Also we compose from all F p̃
i vector F s̃,p̃, from ωp̃

i vector ωs̃,p̃, i ∈ Is̃.
We unite all T̂ p̃

i,j in vector T̂ s̃,p̃, i ∈ Is̃, j = 1, J + 1.

Let us choose the criterial function of the following form

J p̃
s̃

(
δs̃,p̃,F s̃,p̃, ωs̃,p̃, T̂ s̃,p̃

)
= c1

∑
i∈Is

J+1∑
j=1

∑
k∈Ks̃,p̃

δp̃i,j,k(min{tendk ,T p̃} − tbegk )

︸ ︷︷ ︸
the total time in movement

during the planning subhorizon[0,T p̃)

+c2
∑
i∈Is

J+1∑
j=1

T̂ p̃
i,j︸ ︷︷ ︸

the total parking
time in

intermediate
vertices

+ c3
∑
i∈Is

⎛
⎝ ∑

k∈Ks̃,p̃

δp̃i,1,kt
beg
k +

(
1−

K∑
k=1

δp̃i,1,k

)
T p̃ − tdepi

⎞
⎠

︸ ︷︷ ︸
the total parking time in departure vertices
from the time of readiness for departure

until the end of the planning subhorizon[0,T p̃)

+ c4
∑
i∈Is

J+1∑
j=1

∑
k∈Ks̃,p̃

δp̃i,j,kwiCk

︸ ︷︷ ︸
the total cost

of transportations

+ c5
∑
i∈Is

F p̃
i︸ ︷︷ ︸

the total
expected
time until
delivery

+ c6
∑
i∈Is

ωp̃
i︸ ︷︷ ︸

the total
quantity

of undelivered
cargoes during
the planning
subhorizon

,

(20)

where c1, . . . , c6 are non-negative values chosen by a decision-maker. The choice of c1, . . . , c6 im-
pacts on the sense of optimization. When c1 = c2 = c3 = c5 = c6 = 0, c4 = 1 there is a problem
to minimize the total cost of transportations. When c1 = c2 = c3 = c5 = 1, c4 = c6 = 0 there is a
problem to minimize the sum of already spent time by cargoes in the transport network within the
planning subhorizon and the expected time to delivery after the end of the planning subhorizon.
We will mean as rth criterion component multiplier of cr in (20), r = 1, 6. It should be noted
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that not all criterion components are homogeneous. The first, second, third and fifth are mea-
sured in minutes, the fourth is in units of cost, and the sixth is in pieces. If optimization problem
is connected only with homogeneous components, then dimension of coefficients c1, . . . , c6 is not
important. If it is needed for optimization to take into account heterogeneous components then
problem to minimize the total cost should be considered, i.e. values c1, c2, c3, c5 will be measured
in units of cost/minute, and c6 in units of cost/piece.

If one takes p̃ = P , then the planning subhorizon will coincide with [0,T p̃). If we do not split
cargoes numbers set, i.e. I = Is̃ and Ks̃,P =

⋃P
p=1Kp, then criterion (20) and system of constraints

(1)–(19) will be precisely the same as criterion and system of constraints in [11]. But for this
split (more accurately—for the absence of the split) of cargoes numbers set and value of p̃, that is
suitable to decrease quantity elements in transportation set, used for scheduling, direct optimization
of criterion (20) with the purpose to find a timetable on the entire planning horizon may be very
prolonged. That’s why we will form the algorithm to search although not optimal but relatively
fast solution on the base of obtained in the paper constraints.

The presence of linear on optimization variables constraints (2)–(19) and linear criterion (20),
binary variables vectors δs̃,p̃ and ωs̃,p̃, real variable vectors F s̃,p̃ and T̂ s̃,p̃ makes problem (20) with
constraints (1)–(19) mixed integer linear programming problem.

4. THE ALGORITHM FOR SCHEDULING

At formation of the algorithm we will take into account the possibility of more fast computation
time by cut out of transportations that are unlikely to be used by cargoes.

It makes no sense at scheduling for a given subhorizon to take into account transportations from
vertices to which none of the cargo in this subhorizon will arrive. Generally speaking, in order to
determine whether a particular cargo will vertex a specific vertex in a given time, it is necessary
to solve the corresponding optimization problem. However, solving these types of problems takes
time. Therefore, to establish the fact that the loads will not arrive a certain vertex, we will use the
values τm1,m2 , m1 = 1,M , m2 = 1,M . Of course, the conclusion on possibility to arrive at a certain
vertex based on the values τm1,m2 is not always true, m1 = 1,M , m2 = 1,M . This is because these
values are based on past transportation history rather than the transportation currently available.
Nevertheless, this significantly reduces the computation time, although with a deterioration in the
value of the criterion function/inability to accept some cargoes for transportation. We will compare
values τm1,m2 with the ratio of the length of the corresponding partition interval to an acceleration
parameter, m1 = 1,M , m2 = 1,M . The acceleration parameter, which is dimensionless, will be
denoted by A. The lower A the less transportations will be crossed out, but the more cargoes will
likely be accepted for carriage. And, on the contrary, the larger A the faster computation time will
be, but the quality (in terms of cargoes accepted for carriage) of obtained solution will be worse.
If A = 0 there will be no strikeouts. When solving optimization problems, it seems most rational
to set A equal to one. In this case, the expected time before arrival at a certain vertex will be
compared with the duration of the corresponding partition interval, i.e. a period of time in which
the timetable has not yet been frozen and is being searched.

1. Values c1, . . . , c6 ∈R+ are initialized. Numbers P , J ∈N are stated. The number A∈R+

is set.

2. Set of cargoes numbers is divided into S ∈N non-overlapping subsets Is, i.e. {1, . . . , I} =⋃S
s=1 Is, and besides ∀s1, s2 ∈{1, . . . , S} : s1 �= s2 Is1

⋂ Is2 = ∅.

3. Partition intervals T1, . . . ,TP are formed in such manner, that [0, Tmax) =
⋃P

p=1 Tp, where

∀p1, p2 ∈{1, . . . , P} : p1 �= p2 Tp1
⋂Tp2 =∅, and besides T 1 =0, T P = Tmax, T p+1 = T p, p=1, P −1.

4. Sets Kp = {k ∈N : k � K, tbegk ∈Tp} are formed, p = 1, P .
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5. Parameter s̃ = 1 is initialized by 1.

6. Parameter p̃ = 1 is initialized by 1.

7. If p̃ is equal to one, then set Vs̃,p̃ =
⋃

i∈Is̃ v
dep
i is formed. If p̃ is greater than one, then

Vs̃,p̃ =
⋃

i∈Is̃

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vdepi ,
J+1∑
j=1

∑
k∈Ks̃,p̃−1

δ
p̃−1
i,j,k = 0,

∑
k∈Ks̃,p̃−1

δ
p̃−1
i,ji,kv

end
k ,

J+1∑
j=1

∑
k∈Ks̃,p̃−1

δ
p̃−1
i,j,k > 0,

where

ji =
J+1∑
j=1

∑
k ∈Ks̃,p̃−1

δ
p̃−1
i,j,k, i∈Is̃.

Set Vs̃,p̃ consists of departure vertices indices for those cargoes that have not been in movement
yet and from indices of last (on the current moment) vertices for those cargoes that had at least
one transportation.

8. If A = 0, then Ks̃,p̃ = Kp̃. If A > 0, then set Ks̃,p̃ =

{
k ∈Kp̃ : min

m∈Vs̃,p̃
τ
m,vbeg

k
� (T p̃ − T p̃)/A,

min
i∈Is̃

tdepi � tbegk

}
is formed.

9. If p̃ > 1, then set Ks̃,p̃ =
⋃p̃−1

p=1Ks̃,p⋃Ks̃,p̃ is formed. If p̃ = 1, then Ks̃,p̃ = Ks̃,p̃.

10. If set Ks̃,p̃ is empty and p̃ < P , then value p̃ is increased by 1, go to step 7.

If set Ks̃,p̃ is empty and p̃ = P , then δ̂i,j,k = 0, Di = 0, i∈Is̃, j = 1, J + 1, k = 1,K. If s̃ = S,
then the algorithm is finished. If s̃ < S, then value s̃ is increased by 1, go to step 6.

If set Ks̃,p̃ is not empty, go to step 11.

11. The problem

J p̃
s̃ (δ

s̃,p̃,F s̃,p̃, ωs̃,p̃, T̂ s̃,p̃) → min
δs̃,p̃,F s̃,p̃,ωs̃,p̃,T̂ s̃,p̃

with constraints (1)–(19), and also (when p̃ > 1) constraint

δp̃i,j,k = δ
p̃−1
i,j,k, i∈Is̃, j = 1, J + 1, k ∈Ks̃,p̃−1 (21)

is solved.

If a solution of this problem does not exist then δ̂i,j,k = 0, Di = 0, i∈Is̃, j = 1, J + 1, k = 1,K .
If s̃ = S, then the algorithm is finished. If s̃ < S, then value s̃ is increased by 1, go to step 6.

If a solution was found and p̃ < P , then values δ
p̃
i,j,k are set: δ

p̃
i,j,k is equal to one, if cargo with

number i at jth phase uses transportation with number k, and is equal to zero, otherwise, i∈Is̃,
j = 1, J + 1, k ∈Ks̃,p̃. Value p̃ is increased by 1, go to step 7.

If a solution was found and p̃ = P , then Di = 1, values δ̂i,j,k are set: δ̂i,j,k is equal to one, if cargo
with number i at jth phase uses transportation with number k, and is equal to zero, otherwise,
i∈Is̃, j = 1, J + 1, k = 1,K. If s̃ = S, then the algorithm is finished. If s̃ < S, then value s̃ is
increased by 1, go to step 6.

Is should be noted that constraint (21) allows to freeze the timetable for time interval [0,T 1)
when the timetable for interval [0,T 2) is searched, the timetable for time interval [0,T 2) when the
timetable for interval [0,T 3) is searched and so on.
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As the minimal/maximal time algorithm we will name such version of the proposed above
algorithm when at step 2 the split is carried out in ascending and descending order of cargoes
readiness moments for departure. Namely, set I1 consists of cargo number with the earliest/latest
time of readiness for departure, set I2—with the second/penultimate and so on.

5. THE EXAMPLE

Let us consider a model example.

Let the multigraph of the transport network has the form shown in figure. For greater clarity
the second track (the second edge) between adjacent vertices is omitted. The graph shows tracks
with number 1. Some edges are indicated by a dashed line to show the multilevel intersection of
edges in the transport network.

Suppose that some point of reference is chosen and Tmax = 1440 minutes. Starting from the
point of reference: 5 cargoes of the same mass in 1 unit appear every 60 minutes at the vertex
with index 1, these cargoes need to be transported to the vertex with index 97; 5 cargoes of the
same mass in 1 unit appear every 60 minutes at the vertex with index 10, these cargoes need to be
transported to the vertex with index 94.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Multigraph G of the transport network (by orange color departure and destination vertices
are highlighted, by blue color the most frequent path of delivered cargoes for the one of the
obtained results are highlighted).
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Table 1. Properties of an approximate solution found by minimal time algorithm in the format:
the total carriages time/the quantity of cargoes accepted for delivery/the quantity of delivered
cargoes/the total cost of carriages/the computation time in minutes for various P and J

J
P

9 12 15

6 147 960/192/68/21550/75 183 855/240/122/28840/91 183 600/240/122/28840/99

12 141 675/182/60/19720/45 186 435/240/117/28520/52 186 435/240/117/28520/58

24 170 230/220/94/25200/54 195 590/240/96/28160/59 195 590/240/96/28160/64

Table 2. Properties of an approximate solution found by minimal time algorithm in the format:
the total carriages time/the quantity of cargoes accepted for delivery/the quantity of delivered
cargoes/the total cost of carriages/the computation time in minutes for various P and J

J
P

9 12 15

6 148 475/192/64/21530/73 183 580/240/122/29040/88 183 580/240/122/29040/107

12 124 245/156/26/15560/50 187 870/236/106/28060/54 191 685/240/110/28770/62

24 171 470/222/96/25760/55 171 470/222/96/25760/57 171 470/222/96/25760/62

Tranportations between vertices with an index difference equal to 1 or 10 by the absolute value
are carried out every 30 minutes, cost of such transportations is 10 per unit of mass, maximal mass
to transport is 2 units, duration of transportation is 60 minutes. Tranportations between vertices
with an index difference equal to 9 or 11 by the absolute value are carried out every 30 minutes,
cost of such transportations is 20 per unit of mass, maximal mass to transport is 2 units, duration
of transportation is 85 minutes. Thus I = 240, K = 32832, M = 100.

Suppose also that di = 180, Ti = 960, tst min
i,k = 0, tst max

i,k = 120, i = 1, I , k = 1,K.

Suppose ηm1,m2 = 0, m1,m2 = 1, 100. Let

τm1+1,m2+1 =

⎧⎨
⎩90, |m1%10−m2%10| = 1 and |�m1/10� − �m2/10�| = 1

60|m1%10−m2%10|+ 60|�m1/10� − �m2/10�|, otherwise,

where x%y is remainder of x divided by y, �x� is the integer part of x, m1,m2 = 0, 99. Such choice
of values τm1,m2 provides that expected carriage duration from one adjacent vertex to another
(if they are connected diagonally) is 90 minutes. In all other cases the expected carriage duration
is proportional to the minimum number of edges when travelling from one vertex to another is
carried out without using diagonal edges.

We consider the case where c1 = c2 = c3 = c5 = 1, c4 = c6 = 0. We set A = 1. Let us ana-
lyze, how results of applying proposed algorithms depend on P and J . The duration of intervals
T1, . . . ,TP will be the same. Let us preliminarily note that with available transportations, direct
carriage from the vertex with index 1 to the vertex with index 12 costs the same as carriage through
the intermediate vertex with index 2 (or index 11), while carriage directly takes less time. However,
the fastest carriage from departure vertices–diagonally–due to the declared maximal mass and the
frequency of transportations is not available for every cargo, so the optimization problem, generally
speaking, is non-trivial.

In Tables 1 and 2 by bold font there are highlighted cases where all cargoes were accepted for
delivery. As follows from Tables 1 and 2 the best result was obtained for maximal time algorithm
with P = 6, J = 12. This solution we will name basic. For the basic solution the most frequent
chain of vertices indices traversed at movement by delivered cargoes is

1 → 11 → 21 → 32 → 43 → 53 → 64 → 75 → 86 → 97.
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Table 3. Further improve of obtained solution by maximal time algorithm

Parameters of
the algorithm

The total time
of carriages

The quantity
of cargoes accepted

for delivery

The quantity
of delivered
cargoes

The total cost
of carriages

The computation
time, minutes

A = 1, P = 4,
J = 12

182 455 240 122 28 830 222

A = 0,5, P = 6,
J = 12

183 165 240 124 29 000 187

This chain appeared for 8 cargoes. Among delivered during the planning horizon cargoes: for
74 cargoes there were used 9 transportations, for 41 cargoes there were used 10 transportations,
for 7 cargoes there were used 11 transportations. Exactly half of delivered cargoes was sent from
the vertex with index 1.

Another result of the study is the fact that for cases when all cargoes are accepted for delivery,
with a fixed J with decreasing P the computation time (as expected) increases, since mathematical
programming problems of higher dimension are solved. Decreasing in the criterion is also observed.
The growth of J at a fixed P causes to the fact that more cargoes are accepted for delivery. However,
an increase in J from 12 to 15 in this problem did not allow us to decrease the criterion value always.
This observation can be caused by the fact that Ti is relatively small, i = 1, I . Therefore, routes
with a large number of transportations and travel time from the moment of readiness can not
be used. In addition, the goal of optimization is to minimize the total travel time, and diagonal
movement, as noted earlier, faster.

Note that even at J = 12 taking into account constraint (4) there are I ·J ·K = 94556 160 binary
variables in the problem under study. At the same time the solution search time is about an hour,
which can be considered as an acceptable speed. To speed up the search for a solution, one can, for
example, fix a certain set of vertices through which this or that cargo must travel. If a timetable
is found for this set in such manner, then it is possible not to search for a timetable for this set of
cargoes on the entire set of transportations. It is also possible to reduce the number of elements
in the set Ks̃,p̃, formed at the 8th step of the proposed algorithm, s̃ = 1, S, p̃ = 1, P . For example,
one can exclude transportations with starting or ending vertices that have already been visited by
all cargoes from the set Is̃, s̃ = 1, S. However, such (and similar) modifications, leading to the
increasing of the obtaining solution speed, may degrade the solution in terms of quality.

Let us investigate the question about quality of basic solution. For this purpose we reduce P
or A.

As follows from Table 3 decreasing A and P allowed to find a bit better (around 0.5 %) solution
by criterion value than basic solution. But the search time for any of improved solutions has
increased several times. Increasing computation time was caused by increasing dimension of solved
problems at the algorithm work.

Note that the proposed algorithm can potentially be used not only for strategic but also op-
erational planning. Operational planning is possible in situations with fewer transports/fewer
multigraph vertices than those considered in this example [11]. The question of the maximum di-
mension of the problem being solved, at which operational planning is possible using the developed
algorithm, is of separate scientific interest. It must be said that it is possible to speed up the work
of the proposed algorithm with a new/different version of the mixed integer linear programming
problem solver.

All results were obtained using ILOG CPLEX 12.5.1 mathematical package on the personal
computer (Intel Core i5 4690, 3.5 GHz, 8 GB DDR3 RAM).
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6. CONCLUSION

In this paper we have studied the problem of cargoes transportation scheduling in the transport
network represented by the undirected multigraph. Transportation between vertices were carried
out at predetermined time intervals. To solve this problem the mathematical model of carriages
along a multigraph was proposed. This model was constructed using linear equalities and inequal-
ities containing binary and continuous variables. The optimization criterion was formulated. The
algorithm to find an approximate solution was proposed due to possible high dimension of the
obtained problem. The algorithm is based on the decomposition of the cargoes set and the plan-
ning horizon. Additionally, a parameter is introduced into the algorithm for the acceleration of its
work. This parameter controls the number of transportations on which the timetable is built at
one or another step of the algorithm. A study of the quality of decomposition was carried out on
a meaningful example with millions of binary variables.
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